
PowerVR Framework Tips and Tricks

Revision: 1.0
12/05/2021

Public

Copyright © 2021 Imagination Technologies Limited. All rights reserved.

 PowerVR Framework Tips and Tricks — Revision 1.0

Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is',
without any warranty of any kind. Redistribution of this document is permitted with acknowledgement of the source.

Published: 12/05/2021-19:14

2 Public Imagination Technologies Ltd

 PowerVR Framework Tips and Tricks — Revision 1.0

Contents

1. Introduction to PowerVR Framework Tips and Tricks.. 4

2. Models, POD & GLTF with PVRAssets... 5
Semantics...6

3. Input Handling Tips and Tricks... 7
Input Events on Desktop... 8
Input Events on Android.. 8
Input Events on iOS.. 8

4. Render pass/Pixel Local Storage (PLS) Strategies... 9
Setting the LoadOp and StoreOp or Using invalidate/discard...9
Subpasses/Pixel Local Storage... 10

Frequently Asked Questions... 12
Which Header Files Should I Include?..12
Which Libraries Should Be Linked Against?... 12
Does Library Link Order Matter?...13
Are There Any Dependencies to be Aware of?.. 13
What About Linking Against OpenGL ES, or Vulkan, respectively?..14
What are the Strategies for Command Buffers? What about Threading?...................................14
How Are PVRVk Objects Created?... 15
How Are PVRVK Objects Cleaned Up?.. 15
How Is a UIRenderer Cleaned Up?.. 16
Do Any API Objects Need to be Manually Kept Alive?...16
How Are Files/Assets/Resources Loaded?... 16
Defining Buffer layouts with StructuredBufferView.. 18

6. Contact Details.. 20

Imagination Technologies Ltd Public 3

1. Introduction to PowerVR Framework Tips and Tricks — Revision 1.0

1. Introduction to PowerVR Framework Tips and Tricks
The PowerVR Framework, also referred to as the Framework, is a collection of libraries
that is intended to serve as the basis for a graphical application. It is made up of code
files, header files and several platforms’ project files that group those into modules, also
referred to as libraries.

For more information about the PowerVR Framework, please see the PowerVR
Framework Development Guide.

This document contains helpful tips and tricks for getting the most out of the PowerVR
Framework.

Note: This document has been written assuming the reader has a general familiarity
with the 3D graphics programming pipeline, and some knowledge of OpenGL ES
(version 2 onwards) and/or Vulkan.

4 Public Imagination Technologies Ltd

2. Models, POD & GLTF with PVRAssets — Revision 1.0

2. Models, POD & GLTF with PVRAssets
The PVRAssets library contains very detailed, carefully crafted classes to allow handling
of all kinds of assets.

Models, meshes, cameras, lights, animation

The top-level class for models is the pvr::assets::Model class. The model contains an
entire description of a scene, including a number of:

• Meshes

• Cameras

• Lights

• Materials

• Animations

• Nodes.

In general, these objects are found both in raw lists, and bound to Node objects. Each
Node contains a reference to an item in the list of meshes that is stored in the model.
The lists describe the objects that are present. Call model->getMesh(meshIndex) to get
the list.

Nodes

Nodes are the building blocks of the scene and describe its hierarchy. Each node
is part of a tree structure, with parent nodes (except the root node), and carries
a transformation, and a reference to an object such as a mesh, camera or light.
The transformations are applied hierarchically. The transformations, in general, are
animated and dependent on the current frame of the scene.

Nodes are usually accessed through their indices. To make accessing objects easier, the
nodes are sorted by object types, in the order:

1. Mesh

2. Camera

3. Light.

Always be wary when trying to access a node or its underlying object. When trying to
iterate the meshes, for example, to get VBOs, attributes, textures, and so on, always
call getMesh(…), but when trying to display the scene, iterate MeshNodes(). This is a
subtle difference, but it pays to consider the mesh like a blueprint of an object, while
the mesh node is referencing an instance of that object.

Note: Some useful methods

• getMesh(meshIndex) - returns the Mesh with id meshIndex.

• getMeshNode(nodeIndex) - returns the Node with id nodeIndex (which may point to
any Mesh).

Imagination Technologies Ltd Public 5

2. Models, POD & GLTF with PVRAssets — Revision 1.0

• getMeshNode(nodeIndex)->getObjectId() - returns the Mesh that is referenced by
the node with index nodeIndex.

• getCamera(id, [output camera parameters]) - returns the parameters of the
camera with Camera ID id.

• getLight… - returns the parameters of the light with Light ID id.

Models as mesh libraries – shared pointers between models/meshes

Sometimes a model is only used as a library, and not as a scene definition. In such a
case, it is preferable to deal with the meshes as objects in their own right, and not deal
with or even hold the model. For example, the position and animation of objects might
come from application logic and not the model.

The Framework deals with this using the std::shared_ptr 's shared refcounting
feature. Call Model->getMeshHandle() to get a s<Mesh> that will be functional for any
use. Feel free to discard the pointer to the model if it is not needed - the new pointer
will deal with its lifecycle management.

POD & GLTF
To load models, there are readers available for Imagination's .POD (PVRGeoPOD) and
Khronos' .gltf files.

Semantics
Semantics were first introduced as part of PVRShaman (PVR Shader Manager) and
the original PFX format. It is a way to signify to an implementation (for example
PVRShaman, or now the RenderManager class) what kind of information is required
by a shader. In other words, which data from a model needs to be uploaded to which
variable in the shader.

For example, in the PFX format it is possible to annotate the attribute myVertex with
the semantic POSITION, so that PVRShaman knows to funnel the position vertex
data from the POD file into this attribute and display the file. Semantics have been
simplified and expanded since then.

Currently, semantics in the Model class have been made completely flexible, allowing
any vertex attribute or material attribute to be annotated with any semantic,
allowing the reader (POD or GLTF currently) to define semantics, and then it is up to
the application to use these semantics.

In the PowerVR SDK, the convenient PVRShaman semantics are still being used, but
it is up to the two sides (the model and the renderer) to decide on the semantics and
what they mean.

6 Public Imagination Technologies Ltd

https://www.imgtec.com/developers/powervr-sdk-tools/pvrgeopod/
https://www.imgtec.com/developers/powervr-sdk-tools/pvrshaman/

3. Input Handling Tips and Tricks — Revision 1.0

3. Input Handling Tips and Tricks
PVRShell simplified (mapped) input

Nearly all SDK Examples use Simplified Input. This is a model that is suitable for demo
applications. No matter the platform, common actions are mapped to a handful of
events:

• Action1

• Action2

• Action3

• Left

• Right

• Up

• Down

• Quit

The Shell already does this mapping. All that is required is overriding the
eventMappedInput function of pvr::Shell as follows:

pvr::Result::Enum pvr::Shell::eventMappedInput(pvr::SimplifiedEvent::Enum evt)

This function will be called every time one of the actions is performed that maps to a
simplified event.

Lower-level input

Besides this simplified input, it is possible to not use mappedInput and instead use the
lower level input events:

• onKeyDown

• onKeyUp

• onKeyPress

• onPointingDeviceDown

• onPointingDeviceUp

All these functions map differently to different platforms, and may not be present
everywhere, for instance keyDown and so on for mobile devices without keyboards.
They can enable custom programming of the developer's own input scheme. These
functions can be used normally by overriding them from pvr::Shell, exactly like
eventMappedInput.

Imagination Technologies Ltd Public 7

3. Input Handling Tips and Tricks — Revision 1.0

Input Events on Desktop
INPUT EVENT How to trigger on Desktop

(Window)
How to trigger on Desktop
(Console)

Action1 Space, Enter, Click centre of
screen

Space, Enter

Action2 Click left 30% of screen, Key “1” Key “1”
Action3 Click right 30% of screen, Key

“2”
Key “2”

Left/Right/Up/Down Left/Right/Up/Down keys, Drag
mouse Left/Right/Up/Down

Left/Right/Up/Down keys

Quit Escape, Q key, close window Escape, Q key

Input Events on Android
INPUT EVENT How to trigger on Android
Action1 Touch centre of screen
Action2 Touch left 30% of screen
Action3 Touch right 30% of screen
Left/Right/Up/Down Swipe Left/Right/Up/Down
Quit “Back” key

Input Events on iOS
INPUT EVENT How to trigger on iOS
Action1 Touch centre of screen
Action2 Touch left 30% of screen
Action3 Touch right 30% of screen
Left/Right/Up/Down Swipe Left/Right/Up/Down
Quit “Home” key

8 Public Imagination Technologies Ltd

4. Render pass/Pixel Local Storage (PLS) Strategies — Revision 1.0

4. Render pass/Pixel Local Storage (PLS) Strategies
The PowerVR SDK is designed to work with any conformant OpenGL ES or Vulkan
implementation. Most optimisation guidance provided is sensible for any platform, but
some guidance may be critical for PowerVR Platforms. The recommended optimisations
will not normally be detrimental to the performance of other platforms, but they may
not actually improve them.

This section details strategies for optimisations relating to efficiently using multi-
subpass render passes (Vulkan) or multi-pass rendering (OpenGL ES). All of these
optimisations are suitable for any platform that supports them, but their effect on
PowerVR architectures makes them crucial to use whenever possible.

These optimisations are expected to benefit any platform, or at worst be neutral and
have no effect. However, tile-based architectures (which applies to some mobile), and
unified memory architectures (practically all mobile) are expected to hugely benefit.

Setting the LoadOp and StoreOp or Using invalidate/discard
In Vulkan and PVRVk, when creating a RenderPass object, set the LoadOp and the
StoreOp to it.

The LoadOp means "when starting a render pass, what is necessary to do with
whatever contents the frame buffer where we are rendering contains?"

There are three options here:

• Clear actually means "forget what's in there, use this colour". This is usually the
recommended operation.

• Don't Care means "the entire scene will be rendered anyway, so it doesn't
matter, don't load it"

• Preserve means "the scene will be rendered incrementally, using whatever is
already in the framebuffer, so the contents of it need to be preserved."

Clear and Don't Care may sound different, but it is important to realise that their
effect is practically the same as far as the important parts of performance go. They
both allow the driver to ignore what is in the frame buffer. In the case of Clear, the
driver will just be using the clear colour instead of the contents of the frame buffer.
Don't Care is similar, but also tells the driver that no specific colour is required.

Never use Preserve unless absolutely certain it is needed as it will introduce an
entire round-trip to main memory. Its performance cost on bandwidth cannot be
overstated. It is recommended to double-check the application design if Preserve is
actually required.

In OpenGL ES, the situation is very similar. When glClear is called at the start of a
frame, or glInvalidate depth/stencil before swapping, the driver may be allowed to
discard the contents of the frame buffer / depth buffer before the next frame.

The specific flags depend on usage, but the baseline should be as follows:

Imagination Technologies Ltd Public 9

4. Render pass/Pixel Local Storage (PLS) Strategies — Revision 1.0

Recommendations for LoadOp
• Clear for depth/stencil, using the maximum depth value/whatever the stencil

needs to be.

• Clear for colour, if any part of the screen may not be rendered.

• Ignore, if it is guaranteed that every single pixel on the screen will be rendered
to. It would be almost the same to always set Clear in every case, but it does
not hurt to be pedantic and set ignore if it is suitable. Never set Ignore and have
pixels on screen that have not been specifically overwritten, as then there is
undefined behaviour and there may be artifacts or flickering.

Conversely, for OpenGL ES:

• glClear both colour and depth at the start of the frame.

Recommendations for StoreOp

The StoreOp is much the same, but it should be even more obvious. In nearly every
case, it is necessary to:

• Store the colour so that it can be displayed on screen

• Discard the depth and stencil as their work is done

Conversely, for OpenGL ES, before calling eglSwapBuffers:

• Do not do anything special for colour (EGL_PRESERVE in EGL swap behaviour)

• glInvalidateFrameBuffers/glDiscardFrameBuffers any FBOs that are not
being rendered, and all depth/stencil attachments.

In short:

• Colour usually needs to be cleared on load, unless the contents of the frame
buffer need to be explicitly read. A need to load the colour is very commonly a
hint that subpasses/pixel local storage should be used instead if possible.

• Colour usually needs to be stored at the end of the frame, in order to be
presented.

• Depth and stencil almost always need to be cleared to max value at the start of
the pass.

• Depth and stencil almost never need to be stored at the end of the pass, as they
are not required for rendering.

Subpasses/Pixel Local Storage
Subpasses are one of those optimisations that applications should be designed
around. Use them if at all possible, explore them if remotely possible, and rewrite
applications to take advantage of them. One of the first questions that should be
asked when doing a multi-pass application is: "Can region-local subpasses be used
with it?"

10 Public Imagination Technologies Ltd

4. Render pass/Pixel Local Storage (PLS) Strategies — Revision 1.0

Conceptually, a subpass is a run through the graphics pipeline (from vertex shader-
>… -> framebuffer output) whose output will be an input for a later step. For
instance, rendering the G-Buffer in deferred shading can be a subpass.

This is similar to rendering to a texture of screen size in one run and sampling the
corresponding texel at the same position as the rendered pixel on the next pass.

If this is designed properly, this allows the implementation to do a powerful
optimisation on tiled architectures. The output of the fragment shader of the first
subpass is not stored at all to main memory as it is known that it will not need to
be displayed. Instead it is kept on very fast on-chip memory (register files) and
accessed again from the fragment shader of the next subpass.

For example, in Deferred Shading, the G-Buffer contents can be kept on-chip to
be used in the lighting pass. This can have great performance benefits in mobile
architectures, as they are commonly bandwidth limited.

The caveat is that for this to happen, each pixel must only use the information from
the corresponding input pixel. It cannot sample from arbitrary locations, and it
cannot sample at all from the previous contents.

For Vulkan, in order to collapse subpasses in this way:

• Render into the images in one subpass.

• Use these images as input attachments in the other subpass.

• Use Transient and Lazily Allocated flags for those attachments.

For OpenGL ES, the same effect is done with enabling the GL_PIXEL_LOCAL_STORAGE
extension. Additionally, the shaders must have been written to explicitly take
advantage of it.

In short, use subpass folding wherever suitable. With multiple passes, see if they are
suitable for subpass optimisation. For both of these cases, see the DeferredShading
example.

Imagination Technologies Ltd Public 11

https://github.com/powervr-graphics/Native_SDK/tree/5.1/examples/Vulkan/DeferredShading

5. PowerVR Framework Frequently Asked Questions — Revision 1.0

5. PowerVR Framework Frequently Asked Questions
Here are the answers to the most frequently asked about the PowerVR Framework.

For any further questions please feel free to get in touch with us.

Which Header Files Should I Include?
For a typical application, add [sdkroot]/Framework as an include folder, then add:

Vulkan

#include "PVRShell/PVRShell.h"
#include "PVRUtils/PVRUtilsVk.h" //Includes everything, including PVRVk

OpenGL ES

#include "PVRShell/PVRShell.h"
#include "PVRUtils/PVRUtilsGles.h"

If PVRCamera is required

#include PVRCamera/PVRCamera.h

Which Libraries Should Be Linked Against?
Usually, the libraries needed by the Framework should be added through CMake. This
is very straightforward, and involves including the CMakeLists.txt from the SDK,
and relevant targets for the Framework modules. Our SDK examples show how to do
this.

For a different build system, for example to link to pre-built binaries, build the
Framework libraries with CMake and add the library outputs from wherever they
were built. The libraries themselves are:

• [lib]PVRCore.[ext] - such as PVRCore.lib, libPVRCore.a

• [lib]PVRShell.[ext] - such as PVRShell.lib, libPVRShell.a

• [lib]PVRAssets.[ext] - such as PVRAssets.lib, PVRAssets.a

• (Vulkan) [lib]PVRVk.[ext] - such as PVRVk.lib, libPVRVk.a

• [lib]PVRUtils[API].[ext] - such as PVRUtilsGles.lib, libPVRUtilsVk.a.

If CMake is used, the dependencies are transiently included through the CMake
targets, together with include folders and everything else necessary. If some other
way is used, the dependencies are as follows:

• PVRCore: None

• PVRShell: PVRCore

• PVRAssets: PVRCore

12 Public Imagination Technologies Ltd

https://www.imgtec.com/contact-us/
https://github.com/powervr-graphics/Native_SDK

5. PowerVR Framework Frequently Asked Questions — Revision 1.0

• PVRVk: None

• PVRUtilsVk: PVRCore, PVRAssets, PVRVk

• PVRUtilsGles: PVRCore, PVRAssets.

For Android, use the settings.gradle file to define any required Framework
project's build-android folders as dependencies of the application. This is in
addition to CMake.

If the PVRCamera module is required, build and include in the project the
PVRCamera library, which is platform specific, not just native. See the
IntroducingPVRCamera example for more information.

Does Library Link Order Matter?
If using CMake, library link order does not matter as CMake and the libraries take
care of it.

If using a different build system, it is system dependent. For Windows/OSX/macOS,
it does not matter. For Android and Linux, it may matter for some underlying
compilers.

Make sure that for Linux and Android, link order is in reversed order of
dependencies: dependents (high level) first, to dependencies (low level) last. So the
order should be:

1. PVRUtils, PVRCamera

2. PVRShell, PVRAssets

3. PVRCore, PVRVk

4. System libraries (usually: m, thread for linux, android_native_app_glue for
Android)

If there are undefined references to functions that appear to be present, apart from
needing a library that is not included, this is a common culprit.

Are There Any Dependencies to be Aware of?
In general, it is recommend that one of the CMakeLists.txt and/or gradle scripts
should be used as a base, because this takes care of all dependencies.

Otherwise, to start from scratch:

• All external dependencies are downloaded and/or built as part of CMake and put
in the [SDKROOT]/external folder. Pre-downloaded versions are usually bundled
as well. External dependencies are as follow:

• GLM (PVRCore and everything else) for vector maths.

• PugiXML for XML parsing

• GLSLang is used by PVRUtilsVk to allow online shader compilation

• moodyCamel::concurrentQueue for multithreaded producer-consumer queues.

Imagination Technologies Ltd Public 13

https://github.com/powervr-graphics/Native_SDK/tree/5.1/examples/OpenGLES/05_IntroducingPVRCamera

5. PowerVR Framework Frequently Asked Questions — Revision 1.0

• The [SDKROOT]/include folder must be added as an include file search path. It
contains the API header files and any other headers that are used. As well as the
stock Khronos headers for most APIs, it contains PowerVR SDK's own custom
DynamicGles.h, DynamicEgl.h, and vulkan_wrapper.h bindings. This is added
automatically if including any Framework CMake target.

• The [SDKROOT]/framework folder must be added as an include file search path
to access the Framework’s headers. This is added automatically if including any
Framework CMake target.

• The [SDKROOT]/lib [PLATFORM…] folder may contain library dependencies of the
project files. For example, the PVRScope libraries are located there. This is added
automatically if including any Framework CMake target.

• The Framework library files will be either wherever they were built, or by default,
prebuilt would be in [SDKROOT]/framework/lib/[PLATFORM…] . As the PowerVR
libraries do NOT have a C interface as they expose C++ classes in their API, it is
strongly recommended to not use prebuilts. Instead, always build them through
CMake with common compilation options with the application.

What About Linking Against OpenGL ES, or Vulkan, respectively?
It is not necessary to link against them. Both are loaded with dynamic library loading
(except for iOS).

DynamicGLES takes care of it by dynamically linking OpenGL ES.

PVRVk loads Vulkan function pointers the optimal way, using per-device function
pointers. These are stored into per-instance and per-device function pointer tables.
Static linking is unnecessary.

What are the Strategies for Command Buffers? What about Threading?
The Vulkan multithreading model means that developers are free to generate
command buffers in any thread, but they should be submitted in the main thread.
While it may be possible to do it differently, this is normally both the optimal and
the desired way, so there is no need to be concerned with cases of submissions for
multiple threads.

However, command buffers should be generated in other threads if possible. See the
GnomeHorde example for a complete start-to-finish implementation of this scenario.

There are numerous ways that an application can be structured, but some patterns
will emerge.

Single command buffer submission, multiple command secondary command buffers

This strategy is a very good starting point and general case. Work is mostly
generated in the form of secondary command buffers, and these secondary
command buffers are gathered and recorded into a single primary command buffer,
which is then submitted. Almost all examples in the PowerVR SDK use this strategy.

14 Public Imagination Technologies Ltd

https://github.com/powervr-graphics/Native_SDK/tree/5.1/examples/Vulkan/GnomeHorde

5. PowerVR Framework Frequently Asked Questions — Revision 1.0

Multiple parallel command buffers, submitted once

This strategy means creating several command buffers and submitting them
together once. A little additional synchronisation might be needed with the acquire
and the presentation engine, but there could be cases where some small gain is
realised. However, it is much less common for rendering than would be immediately
apparent, as a render pass cannot be split to multiple submissions. This means that
it is mostly operations on different render targets, especially from different frames,
and compute operations on the same queue that can be split into different command
buffers.

In this scenario, all those command buffers would be independent and could be
scheduled to start after the presentation engine has prepared the rendering image
(backbuffer).The presentation engine would then wait for these to finish before it
presents the image. This scenario is applicable if no interdependencies exist between
the command buffers, or if the developer synchronises them with semaphores or
events. For example, it is possible to render different objects to different targets
from different command buffers. It is much more complicated to stream computed
data with this strategy.

Multiple parallel command buffers, submitted multiple times

When there is no reason to do otherwise, submitting once is fine. Sometimes it is
better to completely separate different command buffers into different submissions,
especially if using different queues or even queue families and sometimes if
activating different hardware. In general, it is necessary to devise a synchronisation
scheme in this case, but usually this will be connected to the basic case described
above.

How Are PVRVk Objects Created?
Usually, most PVRVk objects with a Vulkan equivalent such as buffers, textures,
semaphores, descriptor sets, and command pools, are created from the device by
calling a createXXXX() function. This completely shadows the Vulkan API, so look
for the corresponding create() function in the members of the class of the first
parameter of the Vulkan create function.

Whenever possible, defaults are provided for as many of the parameters/create info
fields as is feasible.

Remember that some creations are really allocations from pool objects. For
example, there is no device->createCommandBuffer(), instead call commandPool-
>allocateCommandBuffer().

These are usually hinted by the name: instead of create/destroy for objects created
on a device, there is allocate/free for objects allocated on a pool.

How Are PVRVK Objects Cleaned Up?
Discard (exit the scope) or reset any smart pointers to objects not needed,
when they are finished with. If manually resetting, do this, at the latest, in the
releaseView() function. API objects do not have to be explicitly destroyed, only

Imagination Technologies Ltd Public 15

5. PowerVR Framework Frequently Asked Questions — Revision 1.0

their smart pointers reset, as they are immediately destroyed when their reference
count goes to zero.

Other objects may sometimes hold references to them. Most notably, command
buffers and descriptor sets hold references to objects they are using.

How Is a UIRenderer Cleaned Up?
Discard (exit the scope) or reset any smart pointers to objects not needed,
when they are finished with. If manually resetting, do this, at the latest, in the
releaseView() function. API objects do not have to be explicitly destroyed, only
their smart pointers reset, as they are immediately destroyed when their reference
count goes to zero.

Other objects may sometimes hold references to them. Most notably, command
buffers and descriptor sets hold references to objects they are using.

Do Any API Objects Need to be Manually Kept Alive?
Mostly, they do not.

• Command buffer and descriptor set objects will keep references to any objects
they contain (submitted/updated into them respectively) until reset is called.

• Any nested objects will keep alive underlying objects. For example, image view
objects will keep alive the image objects underneath, pipelines will keep their
pipeline layouts alive, and so on.

There are some notable exceptions:

• Command pool and descriptor pool objects. These objects are not kept alive by
their command buffer and descriptor set objects. This means that they must
be kept alive until no longer required, and command/descriptor pools must be
destroyed only after any of their objects are released.

• Command buffer objects must be kept alive as long as they are executing
(rendering) which generally means waiting on their associated fences. This rule,
in conjunction with the previous one, means that destruction must happen in the
following order:

1. Frame done.

2. Commands released.

3. Pools released.

How Are Files/Assets/Resources Loaded?
The PowerVR Framework uses the stream abstraction for data. Stream is an abstract
class and can be subclassed into a concrete type of stream. Use this to determine
your own.

There are four types of concrete stream classes in the SDK:

16 Public Imagination Technologies Ltd

5. PowerVR Framework Frequently Asked Questions — Revision 1.0

• BufferStream is a stream that points to a block of RAM. It is used to read and
write to memory without a persistent storage. Any block of memory can be
pointed to by the buffer, and this class is used when a custom part of memory
needs to be passed to a function requiring a Stream.

• FileStream is a file.

• AndroidAssetStream is a stream accessing an .apk's assets.

• WindowsResourceStream is a stream accessing a Windows executable's
embedded resources.

There are two ways to make use of these.

Use pvr::Shell::getAssetStream(…name…)

This function will look for any applicable methods depending on the platform,
and attempt to create a stream with that method, until it succeeds or run out of
methods.

The priority from highest to lowest is:

• A FileStream for the determined path, in any of the following folders:

• The current directory.

• The directory where the application executable is.

• The directory Assets_[executable name].

• Any other paths added through pvr::Shell::addReadPath.

• AndroidAssetStream will look for an asset of the specified name in the .apk's
assets folder.

• WindowsResourceStream will look for an embedded resource of the specified
name in the executable.

The parameter passed to getAssetStream is usually a raw filename, or a relative
path, but can be anything depending on the use. The convention used is that is
a raw executable name, and assumes that window resources are named with
this path. Files will be searched in the current folder of the executable and in the
Assets_[ExecutableName] subfolder. Functions that need some kind of data to
create an object, most notably, asset load functions, will take streams as input.
The only exceptions are PVRVk Shaders - these are passed as raw bytes to avoid a
PVRVk dependency on PVRCore.

Directly create the stream

The other option is to directly create a FileStream/ BufferStream/
WindowsResourceStream to load a resource. In order to do this, the resource must
be of the correct type and be supported on the platform. For example, a FileStream
will work fine for Windows and Linux, but on Android it may not be what is expected.
Use an AndroidAssetStream to read from an .apk's assets, while a FileStream
will read and write to the application's temporary location. Finally, in order to pass
custom data to a stream function, for example, a std::string into a function that
requires a stream, the data can be trivially wrapped using the constructor of a
BufferStream.

Imagination Technologies Ltd Public 17

5. PowerVR Framework Frequently Asked Questions — Revision 1.0

Defining Buffer layouts with StructuredBufferView

Calculating buffer layouts

When a UBO or SSBO interface block is defined in the shader, and the developer
needs to fill it with data, strictly follow the STD140 (or STD430) GLSL rules to
determine the memory layout, bit for bit, including paddings. Then translate that into
a C++ layout or manually memcpy every bit of it into the mapped block.

This can become extremely tedious, especially when considering potential inner
structs or other similar complications. Fortunately, PVRUtils is able to help with this.

The StructuredBufferView

This class takes a tree-structure definition of entries, automatically calculates their
offsets based on std140 rules (an std430 version is planned), and allows utilities to
directly set values into mapped pointers.

Note: The ease that this provides cannot be overstated – normally it would be
necessary to go through all the std140 ruleset and determine the offset manually for
every case of setting a value into a buffer.

This is a code example from the Skinning SDK example:

GLSL
struct Bone
{
 highp mat4 boneMatrix;
 highp mat3 boneMatrixIT;
}; // SIZE: 4x16 + 3x16(!) = 112. Alignment: Must align to 16 bytes

layout (std140, binding = 0) buffer BoneBlock
{
 mediump int BoneCount; // OFFSET 0, size 4
 Bone bones[]; // starts at 16, then 112 bytes each element
};

CPU side

An easy-to-use interface is provided to define the StructuredBufferView. Using C+
+ initialiser lists, a compact JSON-like constructor has been created that allows the
developer to easily express any structure.

The following code fragment shows the corresponding CPU-side code for the GLSL
above:

// LAYOUT OF THE BUFFERVIEW
pvr::utils::StructuredMemoryDescription descBones("Ssbo", 1, // 1: The UBO itself is not array
{
 { "BoneCount", pvr::GpuDatatypes::Integer } // One integer element, name “BoneCount”
 { // One element, name “Bones”, that contains...
 "Bones", 1,
 { // One mat4x4 and one mat3x3
 {"BoneMatrix", pvr::GpuDatatypes::mat4x4},
 {"BoneMatrixIT", pvr::GpuDatatypes::mat3x3}
 }
 }
});

// CREATING THE BUFFERVIEW
pvr::utils::StructuredBufferView ssboView;
ssboView.init(descBones); // One-shot initialisation to avoid mistakes.

18 Public Imagination Technologies Ltd

https://github.com/powervr-graphics/Native_SDK/tree/5.1/examples/Vulkan/Skinning

5. PowerVR Framework Frequently Asked Questions — Revision 1.0

// SETTING VALUES
void* bones = gl::MapBufferRange(GL_SHADER_STORAGE_BUFFER, 0, ssboView.getSize(),
 GL_MAP_WRITE_BIT);
int32_t boneCount = mesh.getNumBones();
ssboView.getElement(_boneCountIdx).setValue(bones, &boneCount);
auto root = ssboView.getBufferArrayBlock(0);

for (uint32_t boneId = 0; boneId < numBones; ++boneId)
{
 const auto &bone = _scene->getBoneWorldMatrix(nodeId, mesh.getBatchBone(batch, boneId));
 auto bonesArrayRoot = root.getElement(_bonesIdx, boneId);
 bonesArrayRoot.getElement(_boneMatrixIdx).setValue(bones,
 glm::value_ptr(bone));
 bonesArrayRoot.getElement(_boneMatrixItIdx).setValue(bones,
 glm::value_ptr(glm::inverseTranspose(bone))));
}

gl::UnmapBuffer(GL_SHADER_STORAGE_BUFFER);

It is highly recommended to give the StructuredBufferView a try even if there is
no intention to use the rest of the Framework.

Imagination Technologies Ltd Public 19

6. Contact Details — Revision 1.0

6. Contact Details
For further support, visit our forum:

http://forum.imgtec.com

Or file a ticket in our support system:

https://pvrsupport.imgtec.com

For general enquiries, please visit our website:

http://imgtec.com/corporate/contactus.asp

20 Public Imagination Technologies Ltd

http://forum.imgtec.com
https://pvrsupport.imgtec.com
http://imgtec.com/corporate/contactus.asp

	Contents
	1. Introduction to PowerVR Framework Tips and Tricks
	2. Models, POD & GLTF with PVRAssets
	Semantics

	3. Input Handling Tips and Tricks
	Input Events on Desktop
	Input Events on Android
	Input Events on iOS

	4. Render pass/Pixel Local Storage (PLS) Strategies
	Setting the LoadOp and StoreOp or Using invalidate/discard
	Subpasses/Pixel Local Storage

	Frequently Asked Questions
	Which Header Files Should I Include?
	Which Libraries Should Be Linked Against?
	Does Library Link Order Matter?
	Are There Any Dependencies to be Aware of?
	What About Linking Against OpenGL ES, or Vulkan, respectively?
	What are the Strategies for Command Buffers? What about Threading?
	How Are PVRVk Objects Created?
	How Are PVRVK Objects Cleaned Up?
	How Is a UIRenderer Cleaned Up?
	Do Any API Objects Need to be Manually Kept Alive?
	How Are Files/Assets/Resources Loaded?
	Defining Buffer layouts with StructuredBufferView

	6. Contact Details

